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Vibrations acting on a fluid with density gradient induced by temperature variations
can cause relative flows. High-frequency vibration leads to the appearance of time-
averaged (mean) flows (or streaming flows), which can essentially affect heat and mass
transfer processes. This phenomenon is most pronounced in the absence of other
external forces (in particular, static gravity). In this work, an extensive experimental
and computational study of thermal vibrational convection in a reduced-gravity
environment of a parabolic flight is performed. The transient evolution of the
temperature field in a cubic cell subjected to translational vibration is investigated
by optical digital interferometry. The mean flow structures previously reported in
numerical studies are confirmed. The transition from four-vortex flow to a pattern
with a large diagonal vortex and two small vortices is observed in the transient state.
The experiments reveal a significant enhancement of heat transfer by vibrational mean
flows with increasing the vibrational strength. Three-dimensional direct numerical
simulation with real microgravity profile and two-dimensional numerical modelling
based on averaging approach provide a very good agreement with the experimental
results. The influence of residual gravity on heat transfer and bifurcation scenario
is first investigated numerically and correlated with the experimental data. It is
demonstrated that gravity effects on non-uniformly heated fluids can be reproduced
in weightlessness by applying vibrations to the system.

1. Introduction
The application of vibrations to a fluid system with density gradient can cause

relative flows inside the fluid. If this gradient results from thermal or compositional
variations, such flows are known as thermovibrational or solutovibrational convection,
respectively. The response of the fluid to external forcing depends on the frequency
of vibration. One can speak about low or high frequencies depending on whether the
period is comparable to or much smaller than the reference viscous and heat/mass
diffusion times. The high-frequency limit is of special interest: here the flow can be
represented as a superposition of the ‘fast’ part, which oscillates with the frequency of
imposed vibration, and the ‘slow’ time-averaged part (mean flow), which describes the
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nonlinear response of the fluid to a periodic excitation (Gershuni & Lyubimov 1998).
In the theory of convection, the averaging approach was first used by Zenkovskaya &
Simonenko (1966). Mean flows, also referred to as streaming flows, can contribute
to the transport of heat and mass in the time-averaged sense. This contribution
is most pronounced in the absence of other external forces (in particular, static
gravity).

The study of vibrational impact on fluids has fundamental and applied importance.
Vibrational convection is an additional way of transporting heat and matter in
weightlessness similar to thermocapillary and solutocapillary convection. Mean flows
show some similarity with flows induced by the static gravity and might serve
as a way to control and operate fluids in space (Beysens 2006). Vibrations can
suppress or intensify gravitational convection depending on the mutual orientation
of vibration axis and thermal or compositional gradient (Savino & Monti 1998).
High-frequency oscillations (g-jitter) on-board microgravity platforms can disturb
the experiments that require purely diffusive heat and mass transfer, such as crystal
growth and measurement of transport coefficients. This problem was addressed in the
comprehensive works of Alexander (1990) and Savino & Monti (2001). The results
of Shevtsova, Melnikov & Legros (2004) are complementary to them.

There have been extensive theoretical studies of thermovibrational convection
in various configurations and under different gravity levels. Using the averaging
method, Gershuni, Zhukhovitskii & Yurkov (1982) performed one of the first
numerical simulations of vibrational convection in rectangular and square cavities
in weightlessness. Biringen & Danabasoglu (1990) investigated gravity modulation
effect on thermal convection in microgravity and terrestrial conditions by solving
the full-nonlinear Boussinesq equations. Savino, Monti & Piccirillo (1998) studied
vibrational mean flows in a cubic cavity and found qualitative similarity between
three-dimensional results and previous two-dimensional simulations. The impact of
intensity and direction of vibration on convective instability in rectangular cavities
with different aspect ratios was analysed by Cisse, Bardan & Mojtabi (2004). Demin,
Gershuni & Verkholantsev (1996) showed that in an infinite plane layer, the onset
of instability essentially depends on the angle between the temperature gradient and
the direction of vibration. Farooq & Homsy (1994, 1996) studied the interaction of
small harmonic oscillations with the flow produced by the static gravity field. The
possibility of resonances between the basic flow and higher-order streaming induced
by vibrations was shown. A parametric study of convection in a square cavity over
a wide range of frequencies and amplitudes was performed by Hirata, Sasaki &
Tanigawa (2001). In different parametric ranges, they observed synchronous, sub-
harmonic and non-periodic responses of the system to external forcing. The influence
of vibrations on the stability of a horizontal, binary-mixture layer with the Soret
effect was investigated by Gershuni et al. (1997). Shevtsova et al. (2007) studied the
impact of vibration on thermal diffusion separation of binary mixture in a cubic
cavity.

Ground-based experiments on vibrational convection have been performed in a
number of works. Zavarykin, Zorin & Putin (1988) investigated the stability of quasi-
equilibrium in a horizontal fluid layer heated from above and below under transversal
vibration. These results are in good agreement with theoretical predictions summarized
by Gershuni & Lyubimov (1998). Spatiotemporal behaviour of instabilities in a
Rayleigh–Bénard cell under gravity modulation was analysed by Ishikawa & Kamei
(1993). Ivanova & Kozlov (2003) investigated the combined action of translational
and rotational vibrations on the fluid in a plane layer. Recently, Babushkin &
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Demin (2006) studied thermovibrational flows in a Hele–Shaw cell. The observed flow
structures were confirmed by numerical modelling.

The experimental studies of vibrational phenomena in weightlessness are rather
limited. A series of experiments was carried out with the ALICE-2 instrument on-
board the MIR station by Zyuzgin et al. (2001) and Garrabos et al. (2007). The
influence of vibrations on the propagation of a temperature wave from a heat source
in a near-critical fluid was investigated. The thermovibrational flows were registered
by observing the optical inhomogeneity caused by the distortion of the temperature
field. It was not possible to reconstruct this field quantitatively. The impact of residual
accelerations on-board a spacecraft on convection in differentially heated cylindrical
cavities was studied independently by Babushkin et al. (2001) and Naumann et al.
(2002). In these experiments, the temperature field was monitored at several fixed
points. The results did not provide clear evidence of time-averaged flows and the
related heat transfer caused by periodic high-frequency g-jitter.

In the current work, we present an extensive experimental and numerical study
of thermovibrational convection in a low-gravity environment of a parabolic flight
(g ∼ 10−2g0, where g0 is the gravity level on Earth). The fluid is confined in a
cubic cell with differentially heated walls and is subjected to translational vibration
perpendicular to the temperature gradient. Despite a large number of theoretical
works mentioned above, this configuration has never been studied experimentally in
either weightlessness or ground conditions. The main goals of the experiment are
as follows: (a) to observe and interpret vibrational mean flows and related heat
transfer in low gravity and (b) to verify the existing theoretical studies. Because of the
relatively short microgravity time available in parabolic flights, the experimental study
is focused on transient development of thermovibrational convection. Complementary
theoretical and numerical analysis is aimed at extending the previous results and
assessing unique experimental conditions of our study. The preparation of this
experiment was reported earlier by Melnikov et al. (2008), while the first experimental
results were concisely presented by Mialdun et al. (2008a,b).

The paper is organized as follows. In § 2, we describe the experimental set-up
and microgravity environment of a parabolic flight. Mathematical models used for
numerical simulation are presented in § 3. We employ three-dimensional Navier–
Stokes and heat transfer equations as well as two-dimensional equations based on
the averaging approach. Preliminary theoretical and numerical analysis of the impact
of residual gravity on the flow structure and transient behaviour of the system is
performed in § 4. The experimental results and comparison with numerical simulations
are presented in § 5.

2. The experiment
2.1. Experimental set-up

To observe thermovibrational convection in microgravity, we have designed a special
experimental set-up (figure 1). The working liquid is placed in a cubic cell with
transparent walls of internal size L = 5 mm. The external walls of the cell are shaped
in the form of two prisms (figure 1c) to allow optical observation (see the description
below). The cell is made of quartz Suprasil. The top and bottom walls are kept at
constant temperatures Thot and Tcold , respectively, by Peltier modules (3 × 3 cm). In the
experiments, the mean temperature (Tcold +Thot )/2 was fixed at 40◦C, while the applied
temperature difference ΔT = Thot−Tcold was either 15 K or 20 K. The experimental cell
is attached to the linear motor, which performs translational harmonic oscillations in
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Figure 1. (a) The scheme of experimental set-up, (b) the cubic cell and coordinate system
and (c) the top view of the experimental cell.

L ρ0 βT ν χ τvs τth

(m) (kg m−3) (10−3 K−1) (10−6 m2 s−1) (10−7 m2 s−1) (s) (s) Pr

0.005 769 1.095 1.730 0.623 14.5 401.3 27.8

Table 1. The main parameters of the system: the cell size, physical properties of isopropanol
at 40◦C, characteristic viscous time τvs = L2/ν and thermal time τth = L2/χ and the Prandtl
number Pr = ν/χ .

the X-direction (perpendicular to the temperature gradient). The mass of the moving
part was 2.5 kg. In the experiments, the frequency and amplitude were varied in the
ranges 1–12 Hz and 10–140 mm, respectively. The maximum vibrational acceleration
Aω2 = 5.8 g0 was achieved at A= 10 mm and f = 12 Hz (ω = 2πf ). The upper limit
for frequency increases with decreasing the amplitude.

The working liquid was isopropanol at the mean temperature of 40◦C. The liquid
is characterized by the density ρ0, thermal expansion βT , kinematic viscosity ν and
thermal diffusivity χ . These properties are listed in table 1 along with the other
parameters of the system, which are relevant to our study.

The thermovibrational flows were monitored by measuring the temperature field
inside the cell by optical digital interferometry. The set-up is based on the concept of
Mach–Zehnder interferometer (figure 1). The light beam of He-Ne laser (wavelength
of 632.8 nm) is enlarged and collimated by the beam expander and then splitted
into two parallel beams of equal intensity by the beam splitter. One of the beams
traverses the entire cell in two perpendicular directions. The lateral walls shaped in
the form of two transparent prisms allow scanning the front and side views (planes
YZ and XZ, respectively). The beam paths through the cell are shown by the arrows.
The temperature variations in the liquid create the spatial distribution of refractive
index that modulates the wavefront of the emerging optical beam. After passing
the mirror, this beam interferes with the reference one at the second beam splitter.
An example of interference pattern with front and side views of the cell is shown
in figure 2. The patterns are recorded by a CCD camera (24 fps, 1280 × 1024 pixels
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(a) (b)

Figure 2. Interference pattern of the cell: (a) side view and (b) front view.

sensor) and processed by a computer. Interferograms are reconstructed by performing
two-dimensional fast Fourier transform (FFT) of the fringe image, filtering a selected
band of spectrum, performing the inverse two-dimensional FFT of the filtered result
and phase unwrapping. The knowledge of phase shift gives information about the
gradient of refractive index, which is used to reconstruct two-dimensional projections
of the temperature field on the front and side view planes. This method allows
temperature measurement with the accuracy of 0.01 K. More details about optical
digital interferometry can be found in Mialdun & Shevtsova (2008).

The velocity field in the cell is observed with a help of tracer particles
(hollow ceramic microspheres with the radius 75 ± 20 μm). The availability of two
perpendicular views of the cell allows us to determine three-dimensional coordinates
(positions) of the tracer particles from fringe images (see figures 2 and 10). The
experimental trajectories of particles are restored by processing successive images,
which are recorded during an experimental run.

2.2. Microgravity environment

The experiments were performed in parabolic flights during the 46th and 48th
campaigns organized by the European Space Agency in November 2007 and March
2008, respectively. Parabolic flights provide repeated periods of 20–22 s of reduced
gravity (or ‘microgravity’) with g ∼ 10−2g0, where g0 = −9.81 m s−2 is the gravity level
on Earth. These periods are preceded and followed by 20 s of hypergravity reaching
up to 1.8g0. During one flight, a total of 31 parabolas is performed; each campaign
includes three flights. Figure 3(a) shows a typical gravity profile during a single
parabola. The microgravity period is delimited by the dashed lines and is shown on
a larger scale in figure 3(b). The residual-gravity level is

|gx |, |gy | � 10−2g0, |gz| � 5 × 10−2g0. (2.1)

Here the X and Y axes lie in the plane of aircraft wings (the positive X-axis points
towards the nose). The Z-axis is perpendicular to the plane of the wings and goes out
of the upper side of the vehicle. The experimental set-up was placed in a specially
designed rack and installed in the aircraft. The orientation of the experimental cell
with respect to the described coordinate system is shown in figure 1(b). The gravity
level during the flight was measured by an accelerometer with the sampling rate of
5 Hz. The accelerometer was mounted on the experimental set-up.

The scenario of the experiment is as follows. The temperature gradient is established
in the cell during horizontal flight. To suppress convection, the cell is heated from
above (the temperature gradient is co-directed with the Z-axis of the aircraft and
is opposed to the gravity vector). Vibration is switched on in the beginning of
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Figure 3. Acceleration profiles (a) during a parabolic flight manoeuvre and (b) during
microgravity period.

microgravity and continues for 25 s (slightly larger than microgravity time). During
this time, interferometric patterns are recorded by the camera. The motor is switched
off after the end of the microgravity period. The time of horizontal flight between
two consecutive parabolas is around 2 min. A large number of available parabolas
allowed us to perform repeated experiments with the same configuration as well as
to investigate different vibrational regimes.

3. Mathematical formulation
3.1. Full-nonlinear equations

In this section, we describe mathematical models which are used for numerical
simulation of gravitational and thermovibrational convection in a cubic cell. The
geometry of the cell is presented in figure 1(b). In the coordinate system associated
with the cell, the acceleration applied to the system is the sum of gravitational and
vibrational accelerations:

g(t) + Aω2 cos(ωt) e,

where g(t) = (gx, gy, gz) is the time-dependent gravity vector and e =(1, 0, 0) is the
unit vector along the axis of vibrations. The problem is considered in Boussinesq
approximation, and the density is written as

ρ = ρ0

(
1 − βT T

)
,

where T is the deviation of temperature from Tcold . The equations of motion and heat
transport are written as

∂t V + (V · ∇) V = −ρ−1
0 ∇P + ν∇2V + (1 − βT T )

(
g(t) + Aω2 cos(ωt) e

)
,

∂tT + V · ∇ T = χ∇2T ,

∇ · V = 0.

⎫⎬⎭ (3.1)
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Figure 4. (a) The temperature profile and (b) the temperature gradient on the lateral wall
X = 0. The initial, minimum and maximum values over the experimental run (22 s) are shown.

The validity of Boussinesq approximation for the present system is justified in the
Appendix.

Let us introduce dimensionless variables by taking the scales of length L, time L2/ν,
velocity ν/L, pressure ρoν

2/L2 and temperature ΔT = Thot − Tcold . The dimensionless
equations are written in the form

∂tv + (v · ∇) v = −∇p + ∇2v − Pr−1
(

Ra(t) + Raos cos(Ωt) e
)
Θ,

∂tΘ + v · ∇Θ = Pr−1 ∇2Θ,

∇ · v = 0,

⎫⎬⎭ (3.2)

In these equations, p = P̃L2/ρ0ν
2, where the modified pressure is defined by

P̃ = P − ρ0

(
g(t) + Aω2 cos(ωt) e

)
· X (3.3)

with X = (X, Y, Z). The system includes the Prandtl number Pr , the Rayleigh numbers
Ra(t) = (Rax, Ray, Raz), the oscillatory Rayleigh number Raos and the dimensionless
angular frequency Ω:

Pr =
ν

χ
, Rax, y, z =

gx, y, zβT ΔT L3

νχ
, Raos =

Aω2βT ΔT L3

νχ
, Ω =

ωL2

ν
. (3.4)

The oscillatory Rayleigh number can be regarded as a ratio of the vibrational
buoyancy force to the product of momentum and thermal diffusivities.

The cell boundaries are rigid with the no-slip condition for the velocity. The bottom
and top walls are kept at constant temperatures Tcold and Thot , respectively. So, the
dimensionless boundary conditions of the problem are given by

x, y, z = 0, 1 : v = 0; z = 0 : Θ = 0; z = 1 : Θ = 1 (3.5)

To impose conditions on the lateral walls, we refer to the experimental measurements.
Figure 4(a) shows the temperature profile at the lateral wall X = 0, while the
temperature gradient, which is proportional to the heat flux through the wall, is
presented in figure 4(b). Measurements reveal that the flux is non-zero; in addition,
it is changing with time. However, the temperature distribution on the walls is very
close to linear, and its variation with time is small. So, we impose a linear temperature
profile on the lateral boundaries:

x, y = 0, 1 : Θ = z. (3.6)
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The temperature gradient is established before the start of the experiment; so the
initial conditions are given by

t = 0 : v = 0, Θ = z. (3.7)

To investigate the transfer of heat by vibrational flow, we introduce the
dimensionless heat flux through the walls (the Nusselt number), which is defined
by

Nu(t) =
1

2

∮
Γ

∣∣∣∣∂T

∂n

∣∣∣∣ dS. (3.8)

Here ∂T /∂n is the normal component of the temperature gradient (n is the outward
unit normal to the boundary of the cavity Γ ). In the case of purely diffusive heat
transfer, one has Nu = 1. The difference Nu − 1 measures convective contribution to
the transport of heat. It should be noted that the Nusselt number (3.8) describes
the amount of heat (in dimensionless units) which is transferred through the liquid
volume. To show this, let us introduce two Nusselt numbers

Nu+ =

∮
Γ

∂T

∂n
dS

(
∂T

∂n
> 0

)
, Nu− =

∮
Γ

∂T

∂n
dS

(
∂T

∂n
< 0

)
,

which describe the heat gain (heat loss) by the fluid through the walls, respectively.
Assuming that there is no internal heat sources and the amount of heat resulting
from viscous dissipation is negligible, we have Nu+ + Nu− = 0. Then it is clear that
Nu= (1/2)(Nu+ − Nu−) = Nu+ = − Nu−.

3.1.1. Numerical method

The three-dimensional problem (3.2)–(3.6) is discretized by using the finite-volume
technique on a staggered grid where the pressure and temperature nodes are placed
at the centre of control volumes and the velocity components are positioned at the
faces of these volumes. The discretized equations are solved by an explicit single
forward time step marching method. Computation of the velocity field at each time
step is carried out by the projection method (Chorin 1968). The main idea of the
method is that the initial momentum equation can be splitted into two independent
ones. At first, a ‘provisional’ velocity field corresponding to the correct vorticity but
not satisfying the continuity equation is computed neglecting the pressure gradient
in the momentum equation. The equation defining the velocity field on the next time
level includes only the pressure gradient term. To calculate the pressure, the Poisson
equation is solved. It is discretized using the combination of FFT (DFFT) in the
y-direction and an implicit alternating direction implicit (ADI) method at the other
directions. The discretized Laplace equation for the pressure is solved by the iterative
algorithm. After calculating the ‘provisional’ velocity and pressure, we advance in
time and obtain the values of velocity and temperature.

In order to confirm the accuracy of numerical method, we have conducted
simulations for different sizes of an equally spaced mesh. The results are presented
in table 2 for the following values of parameters: ΔT = 20 K, f =4 Hz, A= 45 mm,
g = 0. The control parameters are the Nusselt number on the hot wall (averaged
over the period) and variation of maximum dimensionless velocity during the period
of oscillation. The presented values correspond to one thermal time τth =401.3 s
from the start of vibration. The regular mesh [32 × 33 × 32] is finally chosen for the
calculations, as further refinement has little effect on the values of control parameters.
Using this mesh, we have investigated the time step sensitivity of the numerical scheme
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Mesh size [nx × ny × nz] Nuhot max |v|

12 × 9 × 12 1.654 4.726–16.467
32 × 33 × 32 1.554 6.386–17.709
42 × 33 × 42 1.546 6.302–17.658

Table 2. The Nusselt number on the hot wall (averaged over the period) and variation of
maximum velocity during the period of oscillation.

by varying the dimensionless time step between 10−5 and 10−4. Negligible variations
of the Nusselt number (within 0.1 %) and maximum velocity (within 0.01 %) with
changing the time step were found. It guarantees the temporal convergence of the
employed numerical method. In the calculations below, the dimensionless time step
is taken as 10−4. Note that this choice provides 57 time steps per period for the
maximum frequency used in the calculations (12 Hz).

3.2. Averaging approach

In the limit of vibrations with high frequency and small amplitude, the method of
averaging can be effectively applied for studying thermovibrational convection (see
Zenkovskaya & Simonenko 1966; Gershuni & Lyubimov 1998).

Let us denote the period of vibration by τ = 2π/ω. In the averaging method, each
field is decomposed into the ‘slow’ time-averaged part (with characteristic time much
larger than τ ) and the ‘fast’ oscillatory part (with characteristic time τ ):

V = V + V ′, T = T + T ′, P̃ = P + P ′ (3.9)

(see (3.3)). The time-averaged (mean) velocity and temperature fields are defined by

V (t) =
1

τ

∫ t+τ/2

t−τ/2

V (τ ′) dτ ′, T (t) =
1

τ

∫ t+τ/2

t−τ/2

T (τ ′) dτ ′. (3.10)

Mean pressure is defined similarly. The derivation of equations for averaged fields
can be found in Gershuni & Lyubimov (1998). The averaging approach is valid under
the following assumptions:

(i) The period of vibration is much smaller than the reference viscous and thermal
times,

τ � min(L2/ν, L2/χ). (3.11)

In addition, it satisfies

τ �

√
L

gβT ΔT
. (3.12)

This inequality is derived from the requirement that the gravitational buoyancy
force induced by the oscillatory temperature component is much smaller than the
vibrational buoyancy force induced by the same component.

(ii) The amplitude of vibration satisfies the inequality

A � L

βT ΔT
. (3.13)

This assumption follows from the requirement that the displacement of fluid particles
during one period of oscillation is much smaller than the characteristic length scale.



62 V. M. Shevtsova and others

The averaged equations of thermovibrational convection have the form

∂t V + (V · ∇)V = −ρ−1
0 ∇P + ν∇2V − βT T g +

(βT Aω)2

2

(
(T e − ∇Φ) · ∇

)
∇Φ,

∂tT + (V · ∇)T = χ∇2T ,

∇ · V = 0,

∇2Φ − ∇T · e = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.14)

Here a new function Φ results from the decomposition of the vector T e into its
solenoidal and irrotational parts, W and ∇Φ respectively:

T e = W + ∇Φ, ∇ · W = 0. (3.15)

The oscillatory fields satisfy the equations

∂t V ′ = −ρ−1
0 ∇P ′ − βT T Aω2 cos(ωt)e,

∂tT
′ = −V ′ · ∇T ,

∇ · V ′ = 0.

⎫⎬⎭ (3.16)

The solution of this system can be obtained with the help of (3.15):

V ′ = −βT Aω sin(ωt)W , T ′ = −βT A cos(ωt)W · ∇T ,

P ′ = −ρ0βT Aω2 cos(ωt) Φ

}
(3.17)

(see Gershuni & Lyubimov 1998 for the details). It should be noted that under
assumption (3.11), the viscous force term driving the oscillatory flow was neglected in
the derivation. Thus, the existence of the Stokes boundary layer for the oscillatory flow
is not taken into account. So, the non-permeability condition rather than the no-slip
one should be imposed on the oscillatory velocity component V ′ and, correspondingly,
on the function W :

W · n
∣∣
Γ

= 0. (3.18)

Here n is the unit normal vector to the boundary Γ . With the help of (3.15), we find
the boundary condition on the function Φ:

(∇Φ − T e) · n
∣∣
Γ

= 0.

In the numerical simulation based on the averaging approach, we consider the
two-dimensional problem of thermovibrational convection in a square cell (plane
XZ in figure 1b). The main goal of two-dimensional simulation is to investigate
the system behaviour in a wide range of control parameters (vibrational impact,
residual-gravity levels and the like). A detailed analysis of particular experimental
runs will be performed on the basis of full equations (3.2), which require much larger
computational costs.

In the two-dimensional model, the boundary conditions for the averaged velocity
and temperature coincide with (3.5) and (3.6). Taking the same scaling for averaged
fields as for their non-averaged counterparts (see § 3.1), we introduce the dimensionless
velocity v, temperature Θ , pressure p and the function ϕ = Φ(ΔT L)−1. The averaged
equations will be solved in terms of stream function ψ and vorticity ζ , which are
introduced by the formulas

v = (u, w) =

(
∂ψ

∂z
, −∂ψ

∂x

)
, ζ =

∂w

∂x
− ∂u

∂z
.
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The governing equations (3.14) are rewritten in the form

∂ζ

∂t
+

∂ψ

∂z

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂z
= ∇2ζ +

1

Pr

[
Rax

∂Θ

∂z
− Raz

∂Θ

∂x
+ Gs

(
∂Θ

∂z

∂2ϕ

∂x2
− ∂Θ

∂x

∂2ϕ

∂x∂z

)]
,

∂Θ

∂t
+

∂ψ

∂z

∂Θ

∂x
− ∂ψ

∂x

∂Θ

∂z
=

1

Pr
∇2Θ,

∇2ϕ =
∂Θ

∂x
,

∇2ψ = −ζ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.19)

The boundary conditions of the problem are written as

x = 0, 1 : ψ =
∂ψ

∂x
= 0, Θ = z,

∂ϕ

∂x
= Θ,

z = 0, 1 : ψ =
∂ψ

∂z
= 0, Θ = 0, 1,

∂ϕ

∂z
= 0,

⎫⎪⎬⎪⎭ (3.20)

while the initial conditions have the form

t = 0 : ψ = ζ = 0, Θ = z,
∂ϕ

∂x
= Θ,

∂ϕ

∂z
= 0. (3.21)

The last two conditions follow from (3.15), where the amplitude of oscillatory velocity
component W = 0 at the initial moment of time.

Equations (3.19) include the Rayleigh numbers Rax and Raz, which are given
by (3.4) and characterize the gravitational mechanism of convection (in numerical
simulation with averaged equations, we consider only constant gravity levels). The
dimensionless parameter Gs is known as their vibrational analogue,

Gs =
(AωβT ΔT L)2

2νχ
, (3.22)

and describes the vibrational mechanism of convection represented by the mean flow.
It can be regarded as the ratio of mean vibrational buoyancy force to the product
of momentum and thermal diffusivities. Following Naumann (2002), we suggest
calling it the Gershuni number (instead of the vibrational Rayleigh number) to
mark a significant contribution of G. Z. Gershuni to the theory of thermovibrational
convection (Gershuni & Lyubimov 1998). The Gershuni number is related to the
oscillatory Rayleigh number Raos and dimensionless frequency Ω (see (3.4)) by the
formula

Gs =
1

2Pr

(
Raos

Ω

)2

.

The relative importance of the vibrational and gravitational convective mechanisms
is characterized by the ratios

Gs

Rax, y, z

=
(Aω)2βT ΔT

2gx, y, zL
. (3.23)

Here we also included the gravity level in the Y -direction, which is relevant when
three-dimensional equations (3.14) are considered. For successful observation of the
thermovibrational convection, the vibrational impact should be strong enough to
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Mesh size [nx × nz] Nu Ψ/nxnz

51 × 51 2.397 0.024109
76 × 76 2.435 0.024276

101 × 101 2.445 0.024308

Table 3. The Nusselt number and the normalized sum of the stream function values.

suppress the influence of residual gravity. It follows that the vibrational velocity
Aω, the thermal expansion βT and the applied temperature difference ΔT should be
large, while the cell size L and residual-gravity levels gx, y, z should be small.

To investigate the dynamics of transient process, we introduce an integral
characteristic based on the instantaneous velocity field. This characteristic is the
sum of discrete stream function values over all grid nodes,

Ψ (t) =
∑
i,k

ψik, (3.24)

which is proportional to the total angular momentum of the fluid in the considered
system.

Problem (3.19)–(3.21) is solved by a finite-difference method using a regular equally
spaced mesh. The time derivatives are forward differenced, and the convective and
diffusive terms are central approximated. The Poisson equations for the stream
function ψ and the amplitude of the ‘fast’ pressure ϕ (see (3.17)) are solved by
introducing an artificial iterative term, which is analogous to the time-derivative one.
The ADI method is used to solve the time-dependent problem for the stream function,
vorticity and temperature and the amplitude of the fast pressure ϕ. More details about
the numerical procedure can be found in Gaponenko et al. (2006).

The accuracy of the numerical method was studied by conducting simulations with
different mesh sizes for the same values of parameters as in three-dimensional case
(see § 3.1.1). The Nusselt number and the normalized sum of stream function values
were used as control parameters. Their values, which correspond to the steady state
in terms of mean fields, are given in table 3. Based on these results, the mesh [76 × 76]
was finally chosen for calculations. The dimensionless time step was 10−5. Calculations
with smaller time steps did not provide any significant change of control parameters.

4. Impact of residual gravity on heat transfer and mean flow pattern
It was mentioned in the Introduction that a large number of previous theoretical

studies were focused on the mean flow organization and its stability. Gershuni &
Lyubimov (1998) showed that in a rectangular cavity under weightlessness, a
non-zero mean flow exists at any value of the Gershuni number Gs when the
direction of vibration is perpendicular to the temperature gradient (this configuration
is considered in the present study). For small values of the Gershuni number, the
stationary mean flow is weak and has a four-vortex symmetrical structure (see figure
5, left). Such ‘quadruple’ flows were also observed by Farooq & Homsy (1994) and
Savino et al. (1998). When the Gershuni number exceeds some critical value Gscr ,
a flow pattern bifurcates to the pattern with different symmetry: one large diagonal
vortex and two small vortices in the corners (it will be referred to as the three-vortex
regime; see figure 5, right). The critical value of the Gershuni number depends on the
physical properties of the fluid and boundary conditions. According to Gershuni &
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Figure 5. The evolution of the sum of stream function values for different levels of residual
gravity and related flow patterns (a few streamlines and temperature isolines are shown),
Gs = 71.15 × 103.

Lyubimov (1998), Gscr = 8 × 103 for adiabatic walls and Gscr = 15 × 103 for perfectly
conducting walls. The former critical value does not depend on the Prandtl number,
while the latter one corresponds to Pr = 1. It should be noted that for Gs > Gscr ,
the four-vortex regime temporally exists as a metastable one. Transition from this
regime to the stable diagonal vortex flow occurs after some period of time, which
depends on the values of Pr , Gs, Rax,y,z and boundary conditions.

During the preparation of microgravity experiment on thermovibrational
convection and post-flight analysis of the obtained results, we have performed
complementary numerical modelling of this phenomenon. The goal of the current
study is to understand what kind of mean flow regimes can be observed during the
short experimental time of 22 s and assess the influence of residual gravity on the
transient process. It should be emphasized that we are interested in mean flows, which
can induce heat transfer in a system subjected to external vibration. In this section,
the simulations are performed for a square cavity by using averaged equations (3.19),
boundary conditions (3.20) and initial conditions (3.21) (the latter approximately
correspond to the beginning of microgravity time). The control parameters of the
system including the physical properties of the liquid are listed in table 1. In the present
study, the temperature difference is fixed at ΔT =20 K. Under these conditions, the
following can be stated: In the considered system (isopropanol in a cubic cell), the
Rayleigh numbers Rax,y,z are determined by the residual-gravity level,

Rax,y,z =
gx,y,zβT ΔT L3

νχ
= 2.492 × 105 gx,y,z/g0, (4.1)

while the Gershuni number Gs is varied by changing the vibrational velocity AΩ .
The characteristic viscous and thermal times of our system are τvs = 14.5 s and

τth = 401.3 s, respectively. It makes possible to observe the transient development
of the thermovibrational flow and its influence on the thermal field during 22 s of
microgravity. In the experiment, we do not study stationary states, since the thermal
time is significantly larger than microgravity time.

First, we have investigated the transient process in a system with vibration f =4
Hz, A= 45 mm and ΔT =20 K (Gs = 71.15 × 103) for different levels of residual
gravity. These parameters correspond to one of the experimental cases of study (see
§ 5). The evolution of the sum of stream function values (see (3.24)) is presented in
figure 5. When Ψ is close to zero, the flow is represented by a four-vortex symmetrical
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structure. After some time, Ψ deviates from zero and starts to grow (by absolute
value) until the steady state is reached (in terms of mean fields). The growth of
Ψ is associated with the transition to the flow pattern with three vortices. Visual
observations show that this pattern sets in when

Ψ (t)

Ψs

> 0.25,

where Ψs = Ψ (∞) is the steady-state value. Based on this criteria, one can define the
lifetime of the four-vortex regime as a time during which Ψ (t)/Ψs < 0.25.

Curve 1 in figure 5 corresponds to the pure weightlessness. The residual gravity in
the Z-direction can destabilize (stabilize) the flow when the gravity vector and the
temperature gradient have the same (opposite) directions (the temperature gradient is
always co-directed with the Z-axis). Curve 2 reflects the stabilizing action of gravity,
which delays the transition to the flow structure with three vortices. The lateral
residual gravity (in the X-direction) is always destabilizing. It can be seen from figure
5 that even the small gravity level of gx/g0 = 10−6 can significantly reduce the lifetime
of the metastable four-vortex regime (Curve 3). In this case, the ratio of the Gershuni
and Rayleigh numbers, which describes the relative importance of vibrational and
gravitational convection, is very large: Gs/Rax = 2.855 × 105. The sign of gx controls
the inclination of the diagonal vortex and the direction of rotation in the steady state
(see curves 3 and 4). The joint action of destabilizing gx and stabilizing gz/g0 = 10−2

is represented by curve 5. Here one has Gs/Raz = 28.55.
The dependence of the lifetime of the four-vortex regime on the gravity level gx/g0

is presented in figure 6(a). The numerical values corresponding to the points in this
plot are collected in table 4. It can be seen that the lifetime rapidly decreases with
increasing gx/g0. When the latter is varied from 10−7 to 10−2, the ratio Gs/Rax

is changing from 2.855 × 106 to 28.55. The stabilizing action of gz increases the
lifetime in comparison with the case in which it is absent. However, the influence
of gz becomes weak with the growth of gx . Figure 6(b) presents the dependence of
the lifetime on the Gershuni number. When Gs is increased, the flow regime with
three vortices is established faster; so the lifetime of the metastable four-vortex flow
decreases. The stabilizing action of gz delays the transition to the former flow pattern.
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gx/g0 = 0 10−7 10−6 10−5 10−4 10−3 3 × 10−3 10−2

gx/g0 = 0 271.3 117.8 88.9 60.0 31.3 5.02 1.05 0.10
gz/g0 = 10−2 342.3 148.8 112.0 75.1 38.6 5.85 1.18 0.13

Table 4. The lifetime (in seconds) of the four-vortex regime for different levels of residual
gravity, Gs = 71.15 × 103. See figure 6(a) for a graphical representation of the data.
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The performed study shows that in the conditions of parabolic flight, where
|gx/g0| � 10−2, |gz/g0| � 5 × 10−2, the expected flow structure is one big diagonal
vortex with two small vortices in the corners (in the considered range of the Gershuni
numbers). As for the four-vortex flow, it might be observed during the first second
after the start of vibration.

We have also investigated the influence of vibration on heat transfer in the system.
Figure 7(a) shows the dependence of the Nusselt number on the Gershuni number
after 22 s from the start of vibration and at the steady state (in weightlessness).
The two curves have the same tendency, and the difference between them is not
large. It follows that for the considered system, the limited microgravity time is
sufficient for observing essential changes in the heat transfer regime because of
vibrational convection. It should be noted that the two curves coincide in the range
0 < Gs <Gscr , where Gscr ≈ 18 × 103. For these values of the Gershuni number, the
flow is represented by a four-vortex pattern, which is established rapidly (within
22 s). For Gs > Gscr , we have a bifurcation to the three-vortex flow regime with a
larger transient time. This regime is observed in the steady state for all the Gershuni
numbers in the range Gscr < Gs < 160 × 103. The flow pattern at 22 s from the start
of vibration is represented by four vortices for all the Gershuni numbers considered,
since its lifetime in weightlessness is large (see table 4). The obtained dependence of
Nu on Gs in the steady state completely agrees with the previous results of Gershuni &
Lyubimov (1998). However, the critical value Gscr ≈ 18 × 103 is slightly larger than
15 × 103, which was reported by the above-mentioned authors for Pr = 1. It should
be noted that in our case Pr = 27.8. In a more viscous (or less heat diffusive) fluid, the
four-vortex flow can exist for larger values of Gs, i.e. for larger vibrational velocities
or the applied temperature differences.
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The influence of residual gravity on heat transfer in the system is shown in figure
7(b). These data correspond to t = 22 s from the start of vibration. The presence of
constant gravity gx leads to the increase of the Nusselt number by approximately 0.4.
The stabilizing action of gz compensates this effect, reducing the above-given difference
by a factor of 1.5–2. The Rayleigh numbers (see (4.1)), which correspond to the gravity
level of figure 7(b, dashed line), are given by Rax = 1246 and Raz = 4983. Analysing
the ratios of the Gershuni number to the Rayleigh numbers with increasing Gs,
one can determine when vibrational convection starts to dominate the gravitational
one. For example, for Gs = 30 × 103 one has Gs/Rax = 24 and Gs/Raz = 6; so the
vibrational convective transport is stronger than the gravitational one. It should be
noted that when residual gravity is taken into account, the flow structure at 22 s is
represented by three vortices, while in weightlessness one has a four-vortex flow.

It follows from the obtained results that the residual gravity in a parabolic
flight affects the heat transfer in the system. Nevertheless, the general trend in
the dependence of the Nusselt number on the Gershuni number remains the same as
in weightlessness.

5. Discussion of experimental and numerical results
In this section, we present experimental results and compare them with numerical

simulations.
We have performed a large number of experimental runs with frequencies and

amplitudes in the ranges 1–12 Hz and 10–140 mm, respectively. Most of the results
relate to the high-frequency limit (see § 3.2). Two applied temperature differences,
namely 15 K and 20 K, were considered. In the experiments, the Gershuni number
was varying from 0 to 71 × 103. To study the evolution of the mean flow, one snapshot
of the temperature field per period is recorded in the same phase of oscillation (when
the interferometric patterns are in the focus of the camera). It should be noted that
the preliminary numerical simulations by Melnikov et al. (2008) showed that the
amplitude of temperature oscillations is very small (or even negligible) with respect
to the time-averaged distortion of the thermal field induced by the mean flow. So,
one can easily follow the evolution of the mean temperature field by recording one
snapshot per period.

For the numerical modelling of thermovibrational convection in real parabolic
flight conditions with variable gravity, we use full three-dimensional equations (3.2),
boundary conditions (3.5) and (3.6) and initial conditions (3.7). The calculations start
6 min before the series of parabolas (when the aircraft performs horizontal flight).
By this time, the temperature profile is already established in the cell (this profile is
close to linear). Numerical simulation continues during several parabolas (including
the time between them) with a real microgravity profile g(t). The gravity data are
taken from measurements of the on-board accelerometer (see figure 3).

5.1. Intensity of thermovibrational convection and transient behaviour

The summary of experimental runs, for which three-dimensional numerical
simulations were performed, is presented in table 5. In each run, thermovibrational
flow develops during 22 s of microgravity. Figure 8 presents a comparison between
experimental and numerical flow structures at the end of microgravity time for
different Gershuni numbers. The experimental pictures (figure 8a) show the projection
of the temperature field on the side view plane XZ. The results of direct numerical
simulation allow us to calculate the mean velocity and temperature fields according
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Run f (Hz) A (mm) ΔT (K) Raos Ω Gs Gs/Rax,y Gs/Raz

1 0 0 20 0 0 0 0 0
2 4 20 20 321 × 103 363 14.05 × 103 5.64 2.82
3 8 17 20 1091 × 103 726 40.62 × 103 16.30 8.15
4 4 45 20 722 × 103 363 71.15 × 103 28.55 14.28

Table 5. Parameters of several experimental runs, for which three-dimensional numerical
simulations with real microgravity profile were performed. In this table, Rax,y = 2492 and
Raz = 4983, which correspond to the typical microgravity level gx,y =0.01g0 and gz = 0.02g0.

to (3.10). To construct two-dimensional plots (figure 8b), the three-dimensional mean
temperature field is averaged in the Y -direction; the velocity field is taken at the
midplane Y = 2.5 mm.

Let us first consider the case in which no vibration is applied (run 1 with Gs = 0).
The experimental temperature field shows some deviations from a purely conductive
state. These deviations result from weak convective flow caused by the residual gravity.
The residual accelerations in the X and Y directions (perpendicular to the thermal
gradient) slightly destabilize the conductive state (or mean flows when vibration
is applied), while their influence in the Z-direction is stabilizing or destabilizing
depending on the sign of gz. According to the results of numerical simulation,
convective flow has a one-vortex structure. Comparison between the experimental
and numerical temperature fields shows that they are similar in the core region of the
cell but exhibit some differences near the sidewalls. In the experiment, the presence
of two glass prisms at the sidewalls enhances the heat fluxes through them. In the
numerical simulation with linear temperature profile at the walls (see (3.6)), these
fluxes are somewhat weaker. In general, we found a very good agreement between
experiment and numerical modelling. The analysis of different runs without vibration
shows that the deviations from the conductive state are not large.

When vibration is applied to the system, the thermal field undergoes essential
changes. For small vibrational contribution of Gs =14.05 × 103 (run 2), the effect is
not very strong because of the interaction of vibrational and gravitational convective
mechanisms. The ratios Gs / Rax,y,z, which describe the relative importance of these
mechanisms, are not large (see table 5). The observed flow pattern is represented
by the one vortex, which is inclined to the right. This inclination is associated with
positive residual gravity gx/g0 during the experimental run (see figures 3 and 8).

With increasing the Gershuni number, thermovibrational convection becomes
more intensive and leads to the strong distortion of the thermal field; see run 3
with Gs = 40.62 × 103. This effect becomes even more pronounced in run 4 with
Gs = 71.15 × 103. In the latter case, the ratios Gs / Rax,y,z are rather large (see table 5);
so the vibrational convective mechanism dominates the gravitational one. We found
a very good agreement between the experimental and numerical temperature fields.
Numerical modelling reveals a flow structure with one big diagonal vortex and
two small vortices, which is typical for the above-given values of the Gershuni
number.

The development of vibrational convection during experimental run 4 with
Gs = 71.15 × 103 is shown in figure 9. Initially (0 s), the thermal field is close to
the conductive state with a very weak convection due to residual gravity. The
thermovibrational flow causes the distortion of the temperature field, which is growing
with time. The numerical snapshot taken at 1 s from the start of vibration reveals the
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Figure 9. The evolution of temperature and velocity fields in the side view during the run
with f = 4 Hz, A = 45 mm, ΔT = 20 K, Gs = 71149. Comparison between (a) experiment and
(a) numerical simulation.

mean flow structure with four vortices. The experimental thermal field also indicates
the presence of this structure. The flow is not completely symmetrical because of
the presence of residual gravity. This result is consistent with the predictions of
two-dimensional numerical modelling in § 4, where it was stated that for the constant
gravity level of gx/g0 = 3 × 10−3 and gz/g0 = 10−2, the four-vortex regime exists during
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0 s 20 s

Figure 10. Interference patterns of the side view of the cell at different times, f = 4 Hz,
A =45 mm, ΔT =20 K, Gs = 71.15 × 103.

1.18 s (see table 4). After the first second, it bifurcates to the pattern with one big
diagonal vortex and two small vortices in the corners (9 and 20 s). The comparison
between the experimental temperature fields at 9 and 20 s reveals a slight increase in
the inclination of isotherms in the core region of the cell, while numerical modelling
shows some decrease. However, this effect is of minor importance, and the agreement
between experiment and numerical simulation is very good.

Figure 10 presents the interference patterns of the cell at 0 and 20 s from the start
of vibration. The corresponding thermal fields in figure 9 were restored from these
patterns. In the first frame (0 s), the pattern is formed by the interchange of the
thin black and white lines (fringes). These lines are inclined and almost parallel; in
addition, they have the same thickness except for the regions near the lateral walls,
where temperature slightly deviates from purely conductive state. In the second frame
(20 s), we see that the thickness of fringes increases in the diagonal from the bottom
left to the top right corner (see also figure 2a). Around this diagonal, the thickness
decreases. In addition, the deformation of fringes becomes larger. All these changes
result from the deformation of the temperature field by thermovibrational convection.

The experimentally observed flow regimes including the transition from four-
vortex to three-vortex pattern confirm the previous numerical studies of Gershuni &
Lyubimov (1998), Gershuni et al. (1982) and Savino & Monti (1998, 2001). The results
of two-dimensional simulations (§ 4) suggest that the three-vortex pattern observed at
the end of microgravity time is close to the stable configuration, to which the system
would arrive in a long-duration experiment. The intensity of flow can slightly increase
on the way to the steady state (see figure 7a), but the mean flow structure will remain
the same.

It should be noted that the vibrational mean flow structures observed in the current
work are somewhat similar to those induced by the static gravity (see, for example,
the work of Pallares et al. (2001) on Rayleigh–Bénard convection in a cubic cavity).
This fact supports the idea of employing vibrations for creating ‘artificial gravity’ in
space (Beysens 2006) in order to transport fluids and heat.

5.2. Three-dimensional flow structure

To study the spatial flow structure, we refer to the experimental measurements, which
provide the projections of the temperature field on two perpendicular planes, and
numerical modelling. A comparison between experimental and numerical results is
presented in figure 11. The thermal patterns in the front and side views (planes YZ and
XZ, respectively) are shown at the end of experimental run 4 with Gs = 71.15 × 103.
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The numerical patterns are obtained by averaging in the X and Y directions for
the front and side views, respectively. One can see that the side view patterns in
experiment and numerical modelling are practically identical. The same is true for the
front view patterns in the core region of the cell. However, the structure of isotherms
near the lateral walls shows some differences between experiment and numerical
simulation. In general, the distortion of the thermal field in the front view is much
less than in the side view. It can be explained by the fact that the flow is developing
in the XZ plane formed by the directions of vibration and the temperature gradient.
The temperature field in the front view is a superposition of patterns in the planes of
constant X. Because of the specific structure of the side view pattern, an interchange
of higher- and lower-temperature regions occurs when one moves in the X-direction
at fixed Y and Z. It explains the obtained front view pattern. Analysing its transient
behaviour, we found that the distance between isotherms in the central part of the
cell is slightly increasing with time, while near the top and bottom walls isotherms
are approaching each other.

To investigate three-dimensional velocity field, numerical and experimental particle
tracing has been performed. First, we analyse the trajectories of ‘numerical’ fluid
particles (in other words, the structure of streamlines) to visualize the three-
dimensional flow field. For numerical modelling of a fluid particle motion, one
should solve the problem

dR
dt

= V (R, t), R(0) = R0, (5.1)

where V , R, R0 are the dimensional velocity, current position and initial position of a
fluid particle, respectively. The velocity is obtained by solving the governing equations
(3.1). The integration of (5.1) is performed by using the fourth-order Runge–Kutta
method and linear interpolation of velocity from the grid nodes into the particle’s
current position. This approach was proven to be accurate (see Melnikov & Shevtsova
2005).

Figure 12 shows the three-dimensional flow structure. To obtain this picture, we
placed 100 equally spaced particles (10 × 10) in each of the planes X = 0.5 mm and
X = 4.5 mm and followed their trajectories during the experimental run (22 s) by
integrating (5.1). The mean flow pattern consisting of one big diagonal vortex and
two small vortices in the corners (shown by red and blue) is clearly seen. It should
be noted that during the first second, the mean flow pattern was represented by four
vortices (see figure 9b). However, the contribution of this regime to the structure of
particle trajectories shown in figure 12 is negligible because of its small lifetime.

The three-dimensional flow field reveals that the motion in the Y -direction is rather
weak. The flow patterns in the planes of constant Y are similar (except small regions
near the side walls); so the mean flow can be described as quasi two-dimensional. The
oscillation amplitude of a given particle depends on its current position in the cell. In
the big diagonal vortex, the particles have small amplitudes near the walls. When these
particles approach the small vortices (where the amplitude is large) and go round
them, the amplitude increases, then decreases, increases again and finally decreases.
The present experimental and numerical results confirm the first three-dimensional
calculations of vibrational mean flows in a cubic cavity by Savino et al. (1998).

To evaluate the velocity of the mean flow, we have compared the evolution of
maximum mean velocity in the volume (obtained from numerical simulation) and the
mean velocity of the experimental tracer particle, which performs a loop trajectory
in figure 11(a). The result is presented on figure 13. In this plot, the time moment
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Figure 11. Comparison between the (a) experimental and (b) numerical temperature fields.
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(numerical simulation). The particles are moving along the mean flow streamlines while
performing oscillatory motion.
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Figure 14. The evolution of the Nusselt number with time during the run with f = 4 Hz,
A =45 mm, ΔT =20K, Gs =71.15 × 103. The experimental data and the results of
three-dimensional numerical simulation are shown.

t = 0 s corresponds to the beginning of microgravity. One can see that the deviation
of the experimental curve from the numerical one is rather small for t = 12–16 s but
becomes larger at the end of the run. In general, the agreement between experiment
and simulation is rather good.

5.3. Enhancement of heat transfer

The experimental study of thermovibrational convection for different vibrational
excitations and applied temperature differences allowed us to measure the influence
of vibration on heat transfer in the system quantitatively. To calculate the Nusselt
number, polynomial approximation of the experimental temperature field near the
walls was used. The normal component of temperature gradient ∂T /∂n was calculated
and summed up over the whole boundary according to (3.8). The evolution of the
Nusselt number during experimental run 4 with Gs =71.15 × 103 (see table 5) is
shown in figure 14. Heat transfer is increased rapidly during the first 5 s after the
start of vibration. Then the growth of the Nusselt number is slowed down, and
during the last 5 s of microgravity time this number slightly decreases, showing some
oscillations. The results of three-dimensional numerical modelling are also shown
in the same plot. For a correct comparison with experimental measurements, the
three-dimensional temperature field is averaged in the Y -direction, and then the
Nusselt number is calculated according to (3.8). One can see that there is some
difference between experimental and numerical curves. We attribute this difference
to the heat fluxes through the lateral walls, which are formed by two glass prisms
in the experimental set-up. It can be seen from figure 8 (case Gs =71.15 × 103) that
experimental temperature gradients near the lateral walls and at the corners of the cell
are stronger than those predicted by numerical modelling (where a linear temperature
profile on the lateral walls is imposed). Nevertheless, the general trend in the growth
of the Nusselt number is the same in theory and experiment. The numerical and
experimental values are rather close at the end of microgravity time. Apparently, the
agreement between experiment and simulation can be made even better by taking
into account heat transfer in the lateral walls. However, our goal is not to stay as
close as possible to a particular experimental set-up with its complex geometry (such
as the rhombic shape of the walls). The main advantage of the present study is that
we have found a good agreement between experiment and simulation by using simple
boundary conditions employed in many previous theoretical works.
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Figure 15. (a) The experimental dependence of the Nusselt number on the Gershuni number.
(b) The dependence of the Nusselt number on the Gershuni number. The experimental data
and the results of two-dimensional and three-dimensional numerical simulations are shown.

The experimental dependence of the Nusselt number on the Gershuni number is
presented in figure 15(a). The Nusselt number is calculated by taking the average
value of Nu(t) over the last 3 s of the experimental run. The solid curve outlines the
tendency in the dependence of Nu on Gs. For small Gershuni numbers (Gs � 15 × 103),
the Nusselt number is around 1.6 and does not depend on the level of vibration.
In this region, the situation is controlled by the residual gravity, which produces
relatively weak convective flows (see also figure 8). With increasing the Gershuni
number, the thermovibrational effect starts to dominate the gravitational one, and
the Nusselt number increases significantly. It should be noted that the scattering of
experimental points is rather small, and the trend is clearly seen.

The comparison between experimental measurements and the results of two-
dimensional and three-dimensional numerical modelling is presented in figure 15(b).
The continuous lines correspond to two-dimensional studies, which are based on the
averaging approach (see also figure 7b). The results of three-dimensional simulations
on the basis of full-nonlinear equations are shown by the open squares (different
squares for the same values of Gs correspond to the parabolas with slightly different
residual-gravity profiles). It can be seen that experimental values are slightly larger
than their numerical counterparts. These values are distributed along the line
corresponding to the constant gravity level of gx/g0 = 5 × 10−3, gz/g0 = 0. Note
that in real parabolic flight conditions, gx/g0 is not constant and varies around the
above value, while gz/g0 can be positive (stabilizing) or negative (destabilizing) (see
figure 3). In addition, it has been already noted that the experimental fluxes through
the lateral walls are somewhat stronger than those predicted by numerical simulation.
These factors explain some difference between experimental and numerical results.
However, it can be seen that experimental data have the same tendency as numerical
ones and are simply shifted by a constant value (around 0.45) from the ideal curve
corresponding to the zero-gravity environment. We conclude that the agreement
between numerical simulation and experiment is rather good. The obtained results
clearly demonstrate that vibrational convection strongly intensifies the heat transfer
in the system.

We have also performed a number of studies in normal gravity conditions
(gz/g0 = 1). In these experiments, the heating is provided from above; so the
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action of gravity is to stabilize the system. It was observed that gravity drastically
suppresses thermovibrational convection. The maximum vibrational level available in
the experiments (Gs = 71.15 × 103) is still rather weak to overcome the action of static
gravity (Gs/Raz = 0.29). The observed thermal field was close to the conductive state
without noticeable deformation of isotherms.

6. Conclusions
In the present work, we have performed an extensive experimental and

computational study of thermal vibrational convection in a reduced-gravity
environment of a parabolic flight (g ∼ 10−2g0). The experiments were carried out
in a cubic cell with differentially heated walls, which was filled with isopropanol and
subjected to translational vibration in the direction perpendicular to the temperature
gradient. The main objective was to study time-averaged (mean) flows, which can
essentially affect the regime of heat transfer in the fluid. To observe these flows, the
temperature field in the side and front views of the cell was measured by optical digital
interferometry, while the velocity field was recorded with help of tracer particles. In
computational studies of thermovibrational convection, two numerical approaches
were employed: (a) two-dimensional simulations on the basis of averaged equations
describing the mean fields and (b) three-dimensional modelling on the basis of full
Navier–Stokes and heat transfer equations. Experimental measurements showed that
fixed temperatures on the hot and cold walls and linear temperature profile on the
other (lateral) walls provide the proper boundary conditions for numerical modelling.

According to the averaged model, the structure of the mean flow in the
stationary state is determined by the dimensionless Gershuni number Gs, which
characterizes the vibrational impact. Two-dimensional numerical modelling in the
range 0 � Gs < 160 × 103 predicted two flow regimes in zero gravity: symmetrical
four-vortex flow when Gs <Gscr and a flow with one big diagonal vortex and two
small vortices in the corners for Gs >Gscr , where Gscr ≈ 18 × 103. Above this critical
value, the four-vortex regime is metastable, and its lifetime decreases with increasing
Gs. The influence of residual gravity on the bifurcation process was first investigated.
The calculations revealed the growth of the Nusselt number Nu (i.e. enhancement of
heat transfer) with increasing the Gershuni number. It was also shown that the heat
transfer is increased (decreased) by the destabilizing (stabilizing) action of residual
gravity.

The experiments performed in parabolic flights provided one of the first quantitative
observations of thermal vibrational convection in a reduced-gravity environment. The
transient development of vibrational mean flows was observed during a large number
of microgravity periods with different level of vibration (each period lasts around
22 s). Measurements of temperature field revealed large deviations from conductive
state due to vibrational mean flows. The transition from four-vortex flow to the
pattern with one diagonal vortex was observed in the transient state. A very good
agreement was found between experimental results and three-dimensional numerical
simulations with real microgravity profile recorded by the on-board accelerometer. It
was found that the flow is developing in parallel planes formed by the direction of
vibration and temperature gradient. The flow patterns in all such planes are similar;
so the total flow can be described as quasi-two-dimensional. The numerical modelling
of fluid motion confirms the experimentally observed trajectories of tracer particles.
The experimental dependence of the Nusselt number on the Gershuni number in the
range 0 � Gs � 71 × 103 was obtained. It showed a significant enhancement of heat
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transfer with increasing the vibrational impact. For example, vibration of the level
f =4 Hz, A= 45 mm, Gs = 71 × 103 can enhance heat transfer rate by more than
60 % in comparison with the case in which no vibration is applied. The obtained data
are in good agreement with two-dimensional and three-dimensional numerical results.
Note that in some way, the considered mean flows are similar to acoustic streaming.
The fundamental understanding of heat transfer enhancement by streaming is highly
important for a wide range of applications from heat exchangers to microchannels
and mini-channels. Thus, the results of the present study can be of interest for a large
scientific community.

The present experimental and numerical study confirms and essentially extends
the previous findings of theoretical origin. It reveals a similarity between vibrational
mean flows in weightlessness and gravity-induced convection. This fact suggests that
gravity effects on non-uniformly heated fluids can be reproduced in weightlessness by
applying vibrations to the system. It provides potential applications to the operation
and control of fluids in space.

This work is supported by the PRODEX programme of the Belgian Federal Science
Policy Office.

Appendix. On the validity of Boussinesq approximation
Let us consider the general equations describing compressible viscous heat-

conducting fluid in the presence of external vibration and the gravity field (Landau &
Lifshitz 1987; Tritton 1988):

ρ
(
∂t V + (V · ∇) V

)
= −∇P + μ∇2V +

(
λ +

μ

3

)
∇(∇ · V ) + ρ

(
g + Aω2 cos(ωt) e

)
, (A 1)

∂tρ + V · ∇ρ + ρ∇ · V = 0, (A 2)

ρcp

(
∂tT + V · ∇ T

)
− βT (T0 + T )

(
∂tP + V · ∇P

)
= κ∇2T +

μ

2

3∑
i,j=1

(
∂Vi

∂Xj

+
∂Vj

∂Xi

− 2

3
δij ∇ · V

)2

+ λ(∇ · V )2. (A 3)

Here T and P are the deviations of full temperature and pressure from the mean
values T0 and P0, respectively. Further, μ is the dynamic viscosity; λ is the second
viscosity coefficient; cp is the specific heat capacity; κ is the thermal conductivity; δij is
the Kronecker delta; and X =(X1, X2, X3) and V = (V1, V2, V3) are the coordinate and
velocity vectors, respectively. The gravity vector is assumed to be constant and corres-
ponds to the maximum level of time-dependent gravity along the corresponding axis.

First, let us formulate the basic assumptions of Boussinesq approximation:
(i) The deviations of temperature and pressure from the mean values are small, i.e.

|T/T0| � 1, |P/P0| � 1. (A 4)

Then the equation of state can be written as

ρ = ρ0(1 − βT T + βP P ).

(ii) The density variation with pressure is much smaller than that with temperature,
and the latter is also small,

|βP P | � |βT T | � 1. (A 5)
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(iii) The variation of density with T and P is negligible everywhere except the
external force term in (A 1), where the density is written as

ρ = ρ0(1 − βT T ). (A 6)

(iv) The contribution of viscous energy dissipation and pressure variations to the
energy balance (A 3) is negligible.

Under these assumptions, (A 1)–(A 3) are reduced to (3.1). In what follows, we
consider the case of ‘vibration in zero gravity’, i.e. Aω 
= 0, g = 0. The case of ‘static
gravity without vibration’ has been extensively addressed in the literature (see, for
example, Tritton 1988). If Boussinesq approximation is valid in both cases, then it is
also valid when vibration and static gravity are present simultaneously.

In the current work, the attention is restricted to high-frequency vibrations (see
§ 3.2). Then the velocity and temperature fields can be decomposed into time-averaged
part, which satisfies (3.14), and oscillatory part described by (3.17). Using these
equations, we can estimate the magnitudes of averaged and oscillatory parts. The
criteria for the validity of Boussinesq approximation are derived by introducing these
estimations into assumptions (i)–(iv).

First, the averaged temperature is estimated as |T | ∼ ΔT ; so one has
|W | ∼ |Φ| ∼ ΔT from (3.15). According to (3.17), the magnitudes of oscillatory fields
are given by

|V ′| ∼ βT ΔT Aω, |T ′| ∼ βT ΔT 2A/L, |P ′| ∼ ρ0βT ΔT Aω2L. (A 7)

The time derivatives of these variables are estimated by differentiating them with
respect to the ‘fast’ time t (note that the functions T , W , Φ do not depend on this
time).

To estimate the averaged velocity, we note that for developed flow, the convective
or viscous term (or both) should be proportional to the mean vibrational force term
in the first equation of (3.14). In addition, these two terms cannot become large in
comparison with the external force term, as the latter is the cause of motion.

Let us first suppose that

|ν∇2V | ∼
∣∣∣∣ (βT Aω)2

2

(
(T e − ∇Φ) · ∇

)
∇Φ

∣∣∣∣ .

It gives the following magnitude of the averaged velocity:

|V | ∼ (βT ΔT Aω)2L

ν
.

Comparing the magnitudes of convective and viscous terms, we find

|(V · ∇)V |
|ν∇2V |

∼ |V |L
ν

≡ Re ∼ Gs

Pr
, (A 8)

where Re is the Reynolds number. This estimation is valid for small Reynolds
numbers (Re < 1). When Re is large, relation (A 8) predicts that the viscous term
is much smaller than the convective one. It is in contradiction with the original
assumption that the viscous term is comparable to the mean vibrational force term.

Now consider the case in which the convective term is comparable to the external
force term. It gives the estimations

|V | ∼ βT ΔT Aω, Re ∼
(

Gs

Pr

)1/2

,
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which are valid for large Reynolds numbers (Re � 1). Note that the above estimation
of the averaged velocity coincides with that for the oscillatory one (see (A 7)). However,
numerical calculations in a wide range of the Gershuni numbers show that the
averaged velocity is much smaller than the oscillatory one. The proportionality factor
γ ∼ |V |/|V ′| < 1 can be obtained from these calculations. For Re< 1, we find

Re ∼ γ 2 Gs

Pr
, |V | ∼ (γβT ΔT Aω)2L

ν
,

while for Re � 1,

Re ∼ γ

(
Gs

Pr

)1/2

, |V | ∼ γβT ΔT Aω.

In the present study of thermovibrational convection in a square cavity with Pr = 27.8
(isopropanol), we obtain γ = 0.0195, which corresponds to the maximum averaged
velocity.

Assuming that the pressure gradient is comparable to the mean vibrational force
term in the first equation of (3.14), we obtain

|P | ∼ ερ0(βT ΔT Aω)2.

In dimensionless form, this relation is written as |p| ∼ ε Gs/P r , where ε is the
proportionality factor. For the present system, we found ε = 0.0792. It is expected
that 0 < ε < 1 in a wide range of the Prandtl numbers.

To estimate the time derivatives of averaged components, we note that in the
present study, the transfer of heat and mass during the experimental time is mainly
due to convection. Thus, the characteristic time can be estimated as the length scale
divided by the magnitude of average velocity, i.e. L/|V |. Note that the results below
are also valid for stationary averaged flows.

Let us now introduce the obtained estimations into the basic assumptions of
Boussinesq approximation, taking into account (3.3) and (3.9). Assumption (i) (see
(A 4)) leads to

ΔT

T0

� 1,
ρ0Aω2L

P0

� 1. (A 9)

Note that here and below we present only independent criteria and skip the dependent
ones (including those obtained by multiplying the existing criteria by γ < 1, ε < 1).
For example, for the oscillatory temperature component, it follows from (A 4) that

βT ΔT A

L

ΔT

T0

� 1,

which is satisfied once (3.13) and the first inequality in (A 9) hold.
In the averaging approach, the full governing equations are separated into the

equations for averaged and oscillatory fields. Therefore, we require that assumption
(ii) (see (A 5)) must be satisfied for averaged and oscillatory components separately
(including their time derivatives). It gives the following criteria:

βT ΔT � 1, βP ρ0

(
ωL

βT ΔT

)2

� 1. (A 10)

Here the second inequality is connected with the requirement that the acoustic
wavelength τc (where c is the speed of sound and τ = 2π/ω is the period of vibration)
must be greater than the characteristic length scale L. Taking into account that
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c2 = ∂p/∂ρ = (βP ρ0)
−1, we can rewrite the above requirement as

βP ρ0(ωL)2 � 1,

This restriction is weaker than the last one in (A 10) as βT ΔT � 1.
The conditions, under which assumptions (iii) and (iv) are satisfied, are derived

in two steps. First, we substitute representation (3.9) into system (A 1)–(A 3), obtain
equations for oscillatory fields and derive the criteria under which these equations are
reduced to (3.16). Second, we average the full governing equations over the period,
taking into account (3.9) and (3.17) and derive the criteria under which the resulting
equations are reduced to (3.14).

One can consider two cases depending on whether the Reynolds number is less or
greater than unity (in practice, one should check the value of γ 2 Gs/P r):

(a) Flows with small Ryenolds number (Re < 1). Substituting (A 6) into continuity
equation (A 2) and collecting the oscillatory terms gives

−βT

(
∂tT

′ + V · ∇T ′ + V ′ · ∇T + V ′∇T ′ + T ′∇ · V
)

+
(
1 − βT T − βT T ′)∇ · V ′ = 0.

This equation is reduced to ∇ · V ′ = 0 by requiring that all other terms are negligible
in comparison with ∇ · V ′. Further, the oscillatory part of momentum equation (A 1)
is reduced to the first equation in (3.16) with the help of assumptions (i) and (ii) in
§ 3.2 and the criteria derived above. Finally, the reduction of the oscillatory part of
energy equation (A 3) to the second equation in (3.16) imposes an additional criterion:

T0 (ωL)2

cp ΔT 2
� 1.

In this case, all terms were compared with V ′ · ∇T .
Consideration of averaged equations provides an additional restriction:

ν2

γ 2L2 cp ΔT
� 1. (A 11)

This inequality is derived from the condition that the contribution of viscous energy
dissipation due to oscillatory motion to the time-averaged energy balance is negligible
in comparison with convective transfer of heat.

(b) Flows with large Reynolds number (Re � 1). This case is treated in a similar
manner and provides the same criteria except relation (A 11), which should be replaced
by

νβT Aω

γLcp

� 1.

To check the validity of Boussinesq approximation, we substitute the physical and
control parameters of the present study into the derived criteria. The parameters,
which are not listed in table 1, are the following: T0 = 313 K, P0 = 101325 Pa,
cp = 2735 J (kg K)−1, βP = 1.02 × 10−9 Pa−1. The maximum values of vibrational
acceleration and frequency are specified in § 2.1. The maximum vibrational velocity is
Aω = 1.18 m s−1, and the maximum gravity level is g = 1.8g0 m2 s−1. One can easily
check that all the obtained criteria are satisfied for ΔT = 20 K.
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